${title}

Basic Information

% for basic in basics:
% for column in basic['columns']: % endfor % for idx, val in enumerate(basic['index']): % for datum in basic['data'][idx]: % endfor % endfor
${column}
${val}${datum}
% endfor

Attribute Distribution

<% actives = [ ' active' if idx == 0 else '' for idx in range(len(dists))] %> % for active, entry in zip(actives, dists): ${entry['name']} % endfor
<% displays = [ 'block' if idx == 0 else 'none' for idx in range(len(dists))] %> % for display, entry in zip(displays, dists):
% for col in entry['columns']: % endfor % for datum in entry['data'][0]: % endfor % for datum in entry['data'][1]: % endfor
${col}
raw${datum}
synth${datum}
${entry['path']}
% endfor

Pair-wise Correlation

% for idx, entry in zip(['Raw Dataset', 'Synthesized Dataset'], corrs): ${idx}
% for column in entry['matrix']['columns']: % endfor % for idx, val in enumerate(entry['matrix']['index']): % for datum in entry['matrix']['data'][idx]: % endfor % endfor
${column}
${val}${datum}
${entry['path']}
% endfor
% if len(svms) > 0:

Misclassification Rate by SVM Classifier

<% svm_actives = [ ' active' if idx == 0 else '' for idx in range(len(svms))] %> % for active, entry in zip(svm_actives, svms): ${entry['column']} % endfor
<% svm_displays = [ 'block' if idx == 0 else 'none' for idx in range(len(svms))] %> % for display, entry in zip(svm_displays, svms):
% if len(entry['path']) == 1:
${entry['path'][0]}
% endif % if len(entry['path']) == 2:
${entry['path'][0]}
${entry['path'][1]}
% endif
% endfor
% endif